191 research outputs found

    Mining structured Petri nets for the visualization of process behavior

    Get PDF
    Visualization is essential for understanding the models obtained by process mining. Clear and efficient visual representations make the embedded information more accessible and analyzable. This work presents a novel approach for generating process models with structural properties that induce visually friendly layouts. Rather than generating a single model that captures all behaviors, a set of Petri net models is delivered, each one covering a subset of traces of the log. The models are mined by extracting slices of labelled transition systems with specific properties from the complete state space produced by the process logs. In most cases, few Petri nets are sufficient to cover a significant part of the behavior produced by the log.Peer ReviewedPostprint (author's final draft

    Leveraging multi-view deep learning for next activity prediction

    Get PDF
    Predicting the next activity in a running trace is a fundamental problem in business process monitoring since such predictive information may allow analysts to intervene proactively and prevent undesired behaviors. This paper describes a predictive process approach that couples multi-view learning and deep learning, in order to gain accuracy by accounting for the variety of information possibly recorded in event logs. Experiments with benchmark event logs show the accuracy of the proposed approach compared to several recent state-of-the-art methods

    Leveraging colour-based pseudo-labels to supervise saliency detection in hyperspectral image datasets

    Get PDF
    Saliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    Novel Reconstruction Errors for Saliency Detection in Hyperspectral Images

    Get PDF
    When hyperspectral images are analyzed, a big amount of data, representing the reflectance at hundreds of wavelengths, needs to be processed. Hence, dimensionality reduction techniques are used to discard unnecessary information. In order to detect the so called “saliency”, i.e., the relevant pixels, we propose a bottom-up approach based on three main ingredients: sparse non negative matrix factorization (SNMF), spatial and spectral functions to measure the reconstruction error between the input image and the reconstructed one and a final clustering technique. We introduce novel error functions and show some useful mathematical properties. The method is validated on hyperspectral images and compared with state-of-the-art different approaches

    Mining and Filtering Multi-level Spatial Association Rules with ARES

    Full text link
    In spatial data mining, a common task is the discovery of spatial association rules from spatial databases. We propose a distributed system, named ARES that takes advantage of the use of a multi-relational approach to mine spatial association rules. It supports spatial database coupling and discovery of multi-level spatial association rules as a means for spatial data exploration. We also present some criteria to bias the search and to filter the discovered rules according to user's expectations. Finally, we show the applicability of our proposal to two different real world domains, namely, document image processing and geo-referenced analysis of census data

    Detection of inconsistencies in geospatial data with geostatistics

    Get PDF
    Almost every researcher has come through observations that “drift” from the rest of the sample, suggesting some inconsistency. The aim of this paper is to propose a new inconsistent data detection method for continuous geospatial data based in Geostatistics, independently from the generative cause (measuring and execution errors and inherent variability data). The choice of Geostatistics is based in its ideal characteristics, as avoiding systematic errors, for example. The importance of a new inconsistent detection method proposal is in the fact that some existing methods used in geospatial data consider theoretical assumptions hardly attended. Equally, the choice of the data set is related to the importance of the LiDAR technology (Light Detection and Ranging) in the production of Digital Elevation Models (DEM). Thus, with the new methodology it was possible to detect and map discrepant data. Comparing it to a much utilized detections method, BoxPlot, the importance and functionality of the new method was verified, since the BoxPlot did not detect any data classified as discrepant. The proposed method pointed that, in average, 1,2% of the data of possible regionalized inferior outliers and, in average, 1,4% of possible regionalized superior outliers, in relation to the set of data used in the study

    Transductive Learning for Spatial Data Classification

    Full text link
    Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the nave Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented
    corecore